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Background and research experiences

• Post-doctoral experiences:

‒Research Intern – 4 months

Supervisor: Prof. Giovanni Russo

‒Assegnista di Ricerca – 2 years

Principal Investigator: Prof. Mario di Bernardo

• Ricercatore RTD-A (started on 4th May 2019) 
at the Department of Mathematics and Applications “R. Caccioppoli”

‒Currently co-supervising 1 Postdoc and 3 PhD students working on synthetic 
biology

Ireland
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Research activity

•During these years I (mainly) worked on:

‒Stability and convergence analysis of non-smooth systems

‒Synchronization and consensus in complex networks

‒Control in Synthetic Biology

•And some other “side-quests”:

‒Pattern formation

‒Herding

‒Control of ecological systems
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Another side project
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Another side project
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(but before a brief introduction to Synthetic Biology)

Multicellular control 



Synthetic Biology 

•Synthetic Biology is an 
interdisciplinary research area 
whose aim is to engineer new 
functionalities in living cells.

•Key in this field is the ability to 
design new genetic circuits.

• Lots of ongoing research since 
the first examples were 
implemented in the early 2000s.

D. Fiore

[1] Gardner et al., Nature (2000)
[2] Shou et al., PNAS (2007)
[3] Din et al., Nature (2016)
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The central dogma of molecular biology

•All synthetic biology systems rely 
on the production of proteins 
starting from the information 
coded in the DNA.

•The process is carried in two 
steps:

‒DNA information are copied in a 
mRNA during the transcription.

‒Ribosomes translate the 
information coded in the mRNA 
to build proteins.

DNA Protein

DNA mRNA Protein

A T G

T A C

transcription translation
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What is a genetic circuit?

• A genetic circuit is composed by genes connected in 
networks or gene regulatory networks.

• The network relationships between genes are mainly 
of two kinds: activation and repression.

3

be regulated in the cell.

Recent work is forcing a rethink of the roles of RNA and proteins in cell control

mechanisms. Until recently, RNA was not believed to have a role in regulation of

gene expression. Now it is known that small RNA molecules can act, through RNA

interference (RNAi) mechanism, to “silence” gene expression [19, 24, 26, 33, 45].

Two examples are small interfering RNAs (siRNAs) and microRNAs (miRNAs). RNA

interference regulates transcription by inducing degradation of targeted mRNAs. For

explicit details on the impact of RNA interference on gene regulation the reader is

referred to Chapter 4, where novel experimental results and a mathematical modeling

approach are presented. Additionally, gene expression can be affected by epigenetic

changes which influence the phenotype without altering the genotype. They consist

of changes in the properties of a cell that are inherited but that do not represent a

change in genetic information [82]. Two examples of epigenetic changes that affect

gene expression are histone modification and DNA methylations (see [82] for more

details).

Figure 1.2: An example of a gene regulatory network. Solid lines represent regula-

tion of gene expression by proteins or other molecules; a normal arrow represents an

activation and a broken arrow an inhibition of gene expression. Dashed arrow repre-

sents transcription and dotted arrows represent translation. Dashed lines represent the

formation of a protein complex.

Hence, a gene regulatory network is a collection of DNA, RNA, proteins, and other

molecules which interact with each other. These interactions control the rates at which

genes in the network are transcribed into mRNA, the rates at which the mRNA are

translated into proteins and in general control the cell behavior. Figure 1.2 shows an
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Activation and repression

• Activation and repression are described by Hill kinetics.

• These are strongly nonlinear terms taking into account saturation effects in the links 
between genes in a circuit.

2.1. Ordinary Differential Equations Models 13
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Figure 2.2: Transcription functions for activation and inhibition. Hill functions are

plotted in red, PWL functions in black.

h− (pi ; θi , ni ) : R≥ 0 × R2
> 0 → R≥ 0, is defined in a similar way (see Figure 2.2(b)). It is

a decreasing function given by:

h− (pi ; θi , ni ) = 1− h+ (pi ;θi , ni ) =
θn i

i

pn i

i + θn i

i

. (2.14)

Therefore, the rate of mRNA transcription when under the effects of inhibitor protein,

pi , will be given by:

f R
i (pi ) = βh− (pi ;θi , ni ), (2.15)

Because of the nonlinearity of the Hill functions, the solutions of a system of ordinary

differential equations of a network of many genes cannot generally be determined by

analytical means.

2.1.4 PWL approximation of transcription

Several authors have proposed approximating the Hill functions by piecewise-linear

(PWL) functions [27, 58, 60, 74, 116, 117]. This approximation is based on the switch-

like character displayed by some genes whose expression is regulated by steep sigmoid

curves. Below (above) a certain concentration, the activator (inhibitor) protein has

little influence, whereas above (below) this concentration, the influence of the protein

rapidly reaches a maximum level (normalized to unity). From the mathematical point

of view, a piecewise-linear function can be seen as the limit of the Hill function as the

Hill coefficient ni tends to infinity.

These piecewise-linear approximations are step functions, s− (pi ;θi ) and s+ (pi ; θi ),

2.1. Ordinary Differential Equations Models 13

h
+

(p
i
 ; q

i
 , n

i
)

q
i

0

1

p
i

s
+

(p
i
 ; q

i
)

(a) Activation function

h
−

(p
i
 ; q

i
 , n

i
 )

q
i

0

1

p
i

s
−

(p
i
 ; q

i
)

(b) Inhibition function

Figure 2.2: Transcription functions for activation and inhibition. Hill functions are

plotted in red, PWL functions in black.

h− (pi ;θi , ni ) : R≥ 0 × R2
> 0 → R≥ 0, is defined in a similar way (see Figure 2.2(b)). It is

a decreasing function given by:

h− (pi ;θi , ni ) = 1− h+ (pi ;θi , ni ) =
θn i

i

pn i

i + θn i

i

. (2.14)

Therefore, the rate of mRNA transcription when under the effects of inhibitor protein,

pi , will be given by:

f R
i (pi ) = βh− (pi ; θi , ni ), (2.15)

Because of the nonlinearity of the Hill functions, the solutions of a system of ordinary

differential equations of a network of many genes cannot generally be determined by

analytical means.

2.1.4 PWL approximation of transcription

Several authors have proposed approximating the Hill functions by piecewise-linear

(PWL) functions [27, 58, 60, 74, 116, 117]. This approximation is based on the switch-

like character displayed by some genes whose expression is regulated by steep sigmoid

curves. Below (above) a certain concentration, the activator (inhibitor) protein has

little influence, whereas above (below) this concentration, the influence of the protein

rapidly reaches a maximum level (normalized to unity). From the mathematical point

of view, a piecewise-linear function can be seen as the limit of the Hill function as the

Hill coefficient ni tends to infinity.

These piecewise-linear approximations are step functions, s− (pi ;θi ) and s+ (pi ;θi ),

2.1. Ordinary Differential Equations Models 13

h
+

(p
i
 ; q

i
 , n

i
)

q
i

0

1

p
i

s
+

(p
i
 ; q

i
)

(a) Activation function

h
−

(p
i
 ; q

i
 , n

i
 )

q
i

0

1

p
i

s
−

(p
i
 ; q

i
)

(b) Inhibition function

Figure 2.2: Transcription functions for activation and inhibition. Hill functions are

plotted in red, PWL functions in black.

h− (pi ;θi , ni ) : R≥ 0 × R2
> 0 → R≥ 0, is defined in a similar way (see Figure 2.2(b)). It is

a decreasing function given by:

h− (pi ;θi , ni ) = 1− h+ (pi ;θi , ni ) =
θn i

i

pn i

i + θn i

i

. (2.14)

Therefore, the rate of mRNA transcription when under the effects of inhibitor protein,

pi , will be given by:

f R
i (pi ) = βh− (pi ; θi , ni ), (2.15)

Because of the nonlinearity of the Hill functions, the solutions of a system of ordinary

differential equations of a network of many genes cannot generally be determined by

analytical means.

2.1.4 PWL approximation of transcription

Several authors have proposed approximating the Hill functions by piecewise-linear

(PWL) functions [27, 58, 60, 74, 116, 117]. This approximation is based on the switch-

like character displayed by some genes whose expression is regulated by steep sigmoid

curves. Below (above) a certain concentration, the activator (inhibitor) protein has

little influence, whereas above (below) this concentration, the influence of the protein

rapidly reaches a maximum level (normalized to unity). From the mathematical point

of view, a piecewise-linear function can be seen as the limit of the Hill function as the

Hill coefficient ni tends to infinity.

These piecewise-linear approximations are step functions, s− (pi ;θi ) and s+ (pi ;θi ),

12 Chapter 2. Modeling Gene Regulatory Networks

Therefore, the rate of mRNA production can be described by the following function:

f R
i (P) =

βP

K d + P
. (2.11)

This function is known as the Michaelis-Menten function in the context of enzyme

kinetics. For the general derivation of Michaelis-Menten enzyme kinetics the reader is

referred to [93].

2.1.3 Hill functions

Experimental evidence often suggests monotonic sigmoidal-shaped function [129, 130]

to describe the transcription process when a cooperative phenomenon is suspected. Let

pi denote an activator protein. Then the Hill function, h+ (pi ;θi , ni ) : R≥ 0 × R2
> 0 →

R≥ 0, can be used to describe the probability that the protein is bound to the promoter:

f R
i (pi ) = h+ (pi ;θi , ni ) =

pn i

i

pn i

i + θn i

i

, (2.12)

where ni > 0 is not usually an integer [93]. Parameter ni < 1, ni = 1 or ni > 1

corresponds to negative, zero or positive cooperativity respectively. Therefore, the rate

of mRNA transcription will be given by:

f R
i (pi ) = βh+ (pi ;θi , ni ), (2.13)

The Hill function is a reasonable quantitative form to describe a reaction velocity in a

Michaelis-Menten sense. However, it is worth noting that the detailed reactions which

give rise to it are not too realistic [93]. However, empirical rate forms like the Hill

equation are extremely useful in modeling [93].

The Hill function for activation is increasing and has two real parameters, θi and

ni . It describes a curve that rises from zero and approaches unity as shown in Figure

2.2(a). The parameter θi is the expression threshold, and has units of concentration. It

corresponds to the Michaelis-Menten constant K d in equation (2.10). It is the threshold

of protein concentration, pi , needed to produce a significant increase in the mRNA

regulated by pi . The parameter ni is called Hill coefficient (or cooperativity coefficient)

and controls the steepness of the Hill function. The larger ni , the more step-like is

the Hill function. In simple cases n can represent the number of protein monomers

required for saturation of binding to the DNA [127]. The Hill function for inhibition,
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A simple example: the Genetic Toggle Switch

• A genetic toggle switch is the simplest example of synthetic memory mechanism.

02 December 2013 12:16

   reti geniche Page 16    
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The importance of designing gene networks

• Synthetically engineered organisms can be invaluable 
in many application fields, such as:

▪Growth control in bacterial populations

▪Drug or Fuel production in bioreactors

▪Personalized cell therapies

D. Fiore 14 /56



Crucial difference with Circuits

• Despite some similarities, genetic and electrical circuits are very  

different.

• While the response of electric circuit is often reliable and 

robust, their genetic counterparts are not, due to the high 

levels of noise.

• The genetic circuits are also influenced from downstream 

processes (retroactivity).

Electric toggle-switch

D. Fiore

Genetic toggle-switch
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Challenging problems

• New methodologies are required to model and control these systems due to additional 
problems, such as:

‒Context-dependence

‒Stochastic effects

‒Cell-to-cell variability

‒Spatially distributed dynamics

‒ Intercellular communication 

‒ Isolation of modules

‒Cellular growth, division, mutation

D. Fiore 16 /56



The need for feedback

Actuation

Sensing

reference output
SystemController

External control

• These features of genetic circuits strongly indicate that to make synthetic biological devices 

operate correctly one needs to introduce FEEDBACK.

• Feedback control can be used to manipulate in real-time the behaviour of living cells.

D. Fiore

[1] Milias-Argeitis et al., “In silico feedback for in vivo regulation of a gene expression circuit”, Nature (2011)
[2] Menolascina et al. “In-vivo real-time control of protein expression from endogenous and synthetic gene networks”, PLoS Comp Bio (2015)
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External control of the genetic toggle-switch

• An example of application of the external control in 
synthetic biology is the control of a toggle-switch on its 
unstable equilibrium.

• The toggle-switch [1] is a bistable dynamical system:

[1] Gardner, Cantor, Collins  – “Construction of a genetic toggle switch in Escherichia coli”, Nature (2000)

It works as a “reversible memory”
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External control of the genetic toggle-switch

• Various strategies were proposed [1], the most 
relevant was an open-loop control signal.

• However, they did not provide analytical
justifications of what they observed.

• The questions that moved our initial research were:

‒Can we give an analytical description of what they 
observed in experiments?

‒Can we exploit this description to design more robust 
and reliable controllers?

[1] Lugagne et al.  – “Balancing a genetic toggle switch by real-time feedback control and periodic forcing”, Nature Communications (2017)

D. Fiore 19 /56



External control of the genetic toggle-switch

• By exploiting the timescale separation between system and inputs, we applied averaging 
theory to get the autonomous average system

where

‒ and        is the translation time-constant

‒ is the duty cycle of the input PWM signals

‒ and               depend on the amplitudes
and                of the input signals:
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A) Research outputs 

• The average model allowed us to get insights 
into how the parameters of the system and of 
the control signal must be chosen.

• We exploited these results to design more 
reliable and robust feedback controllers 
(PI/PWM, MPC).

D. Fiore

[1] Fiore et al. – “Analysis and control of genetic toggle switches subject to periodic multi-input stimulation”, IEEE Control Systems Letters (2018)

[2] Guarino et al. – "Balancing cell populations endowed with a synthetic toggle switch via adaptive pulsatile feedback control", ACS Synthetic Biology (2020)
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In-silico validation

• We validated their performance and robustness by means of realistic agent-based 
simulations in BSim.

D. Fiore

[1] A. Matyjaszkiewicz et al., “BSim 2.0: An advanced agent-based cell simulator,” ACS Synth. Biol., (2017)
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In-silico validation
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Internal cellular control

• Another approach is to embed all functions required for control via gene regulatory 

networks:

D. Fiore 24 /56



• feasible

- available parts

- metabolic burden in host cells

• reliable

- reliable dynamics

• robust

- environmental fluctuations

- intrinsic stochasticity

• modular

- reuse of parts/modules

Wish list

D. Fiore 25 /56



Designing synthetic Multicellular Consortia

• Communities of interacting cellular populations can aid the realization of some points 
from the wish list.

• Assembling cellular consortia can be instrumental to achieve modularity…

• …and avoid or mitigate undesired effects, such as
▪excessive metabolic burden 
▪ incompatible reactions
▪competition for limited resources
▪pathways interactions

=

Single population

Multicellular consortium

D. Fiore 26 /56



Key ingredients of synthetic consortia

Memory Oscillator

Gene Regulatory Networks

Communication Mechanism

Community Composition

No interaction

Commensal Mutualistic

Commensal
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Design approach

• There are two possible paradigms:

1. Engineered consortia where the functions of each
population are designed ad hoc off-line so that a specific
desired behaviour emerges when they are mixed

2. Multicellular control architectures where sensing, 
actuation and computation functions are split across
populations and the desired behaviour can be set by 
varying a reference

D. Fiore 28 /56



Multicellular control

• Goal: Engineer a consortium of two (or more)
cell populations where the Controllers can sense 
and regulate some phenotype of the Targets

• Cooperative microbial consortia 

‒Allow to achieve more advanced functionalities

‒Give additional modularity and flexibility

[1] G. Fiore, A. Matyjaszkiewicz, F. Annunziata, C. Grierson, N. Savery, L. Marucci, M. di Bernardo – “In-silico analysis and implementation of a multicellular 
feedback control strategy in a synthetic bacterial consortium”, ACS Synthetic Biology (2017)
[2] B. Shannon, C. Zamora-Chimal, L. Postiglione, D. Salzano, C. Grierson, L. Marucci, N. Savery, M. di Bernardo – “In vivo Feedback Control of an Antithetic 
Molecular-Titration Motif in Escherichia coli using Microfluidics”, ACS Synthetic Biology (2020)
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Muticellular Control strategy

1. A reference signal is compared with a signal Q2 from the targets

2. The computed error generates via B a signal Q1 for the targets

3. The control input is then delivered to the target cell

4. The input via C represses the target gene D
5. D generates the signal Q2 that is sent to the controller cells

y

D. Fiore 30 /56



Modelling of Controllers

𝑑 𝐴:𝑄2
𝑑𝑡

= 𝜒𝐴:𝑄,𝑟,0 + 𝜒𝐴:𝑄,𝑟
𝐾𝑟
𝑛𝑟

𝐾𝑟
𝑛𝑟 + 𝑟 𝑛𝑟

⋅ 𝜒𝐴:𝑄,𝑎,0 + 𝜒𝐴:𝑄,𝑎
𝑄2,𝑐 𝑟

𝑛𝑟

𝐾𝑞
𝑛𝑟 + 𝑄2,𝑐

𝑛𝑟
− 𝛾𝐴:𝑄[𝐴: 𝑄2]

𝑑 𝐵

𝑑𝑡
= 𝜒𝐵,0 + 𝜒𝐵

𝐴: 𝑄2,𝑐
𝑛𝑟

𝐾𝑟
𝑛𝑟 + 𝐴:𝑄2,𝑐

𝑛𝑟
− 𝛾𝐵[𝐵]
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Modelling the Signalling To Targets 
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Modelling of Target cells
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Modelling the Signalling To Controllers 
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Testing multicellular control in-vivo

• The scheme has been recently validated through in vivo experiments at the University of 
Bristol (and a paper will soon be out).

• It is essential to mantain stable coexistence between cell populations
(hard to keep also in controlled experiments).

[1] F. Annunziata et al. – "An orthogonal multi-input integration system to control gene expression in Escherichia coli”, ACS Synthetic Biol. (2017)

[2] N. Kylilis et al. – "Tools for engineering coordinated system behaviour in synthetic microbial consortia”, Nature communications (2018)
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Embedded PID controller

• Recently it has been proposed a genetic circuit 
implementing an integral action guaranteeing 
perfect robust adaptation.

[1] C. Briat, A. Gupta, and M. Khammash, “Antithetic integral feedback ensures robust perfect adaptation in noisy biomolecular networks,” Cell Systems (2016)
[2] M. Chevalier, M. Gómez-Schiavon, A. H. Ng, and H. El-Samad, “Design and analysis of a proportional-integral-derivative controller with biological molecules,” Cell Systems (2019)

Parameter perturbationsNominal conditions

The addition of the Proportional and Derivative actions improves the system robustness and performance.
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Multicellular PID Controller
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Multicellular PI Controller

Target process dynamics:

ሶ𝑋1 = −𝛾1𝑋1 + 𝛽𝑢𝑄𝑢
𝑡

ሶ𝑋𝑐 = 𝛽𝑐𝑋1 − 𝛾𝑐𝑋𝑐

Integral population dynamics:

ሶ𝑍1 = 𝜇𝑌𝑑 − 𝛾𝑧𝑍1𝑍2

ሶ𝑍2 = 𝜃𝑄𝑥
𝑖 − 𝛾𝑧𝑍1𝑍2

Dynamics of the QS:

ሶ𝑄𝑘
𝑗
= 𝑄𝑘,0

𝑗
+ 𝜂 𝑄𝑘

𝑒 − 𝑄𝑘
𝑗
− 𝛾𝑗𝑄𝑘

𝑗

ሶ𝑄𝑘
𝑒 = 𝑀𝜂

𝑗ϵ𝑆

𝑄𝑘
𝑗
− 𝑄𝑘

𝑒 − 𝛾𝑒𝑄𝑘
𝑒

𝑗 ∈ 𝑆, 𝑆 = 𝑝, 𝑖, 𝑡 , 𝑘 ∈ {𝑢, 𝑥}

Activation

Repression

QS molecule

𝑄𝑢,0
𝑝

= 𝛽𝑃𝑌𝑑
𝜇𝑌𝑑

𝜇𝑌𝑑 + 𝜃𝑄𝑥
𝑝 𝑄𝑢,0

𝑖 = 𝛽𝐼𝑍1 𝑄𝑥,0
𝑡 = 𝛽𝑥𝑋𝑐

Control action
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Multicellular PI Controller: circuit design

• Under some mild assumptions the system has a 
non-negative equilibrium point if:

𝛽𝑃
∗ ≤

8𝜇𝛾4

𝛽𝑐𝛽𝑥𝛽𝑢𝜃

• The equilibrium point is locally asymptotically 
stable if the value of the Integral gain 𝛽𝐼 does not 
exceed a threshold:

𝛽𝐼 <
𝛽𝑃𝛾

2𝜇
+

18𝛾5

𝛽𝑐𝛽𝑥𝛽𝑢𝜃

• The range of 𝛽𝐼 can be widen:

o Choosing fast dividing cells

o Reducing of the strength of the promoters

Activation

Repression

QS molecule
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BSim simulations: nominal conditions

Numerical simulations are performed in Bsim to take into account cells growth and 
division, and the diffusion of quorum sensing molecules.

𝛽𝑃 = 0.0300

𝛽𝑃 = 0.0414

𝛽𝑃 = 0.0200

𝛽𝑃 = 0.0300, 𝛽𝐼 = 0.0002

𝛽𝑃 = 0.0414, 𝛽𝐼 = 0.0002

𝛽𝑃 = 0.0200, 𝛽𝐼 = 0.0002

Target

Controller P

Controller I

[1] A. Matyjaszkiewicz et al., “BSim 2.0: An advanced agent-based cell simulator,” ACS Synth. Biol. (2017)

P
R

O
P

O
R

TIO
N

A
L

P
I
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• Cell-to-cell variability is tested assigning different 
values of parameters to the daughter cells each 
time a cell splits into them

• The parameters are drawn from a normal 
distribution centered in their nominal value 𝜇
with standard deviation

𝜎 = 𝐶𝑉 ⋅ 𝜇

• The relative error is computed as:

𝑒% =
1

𝑛


𝑗=1

𝑛
ത𝑄𝑥
𝑡,𝑗
− 𝑄𝑥,𝑑

𝑡

𝑄𝑥,𝑑
𝑡

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠
ത𝑄𝑥
𝑡,𝑖 = 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑣𝑒𝑟 𝑎 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑄𝑥,𝑑
𝑡 = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

Robustness to cell-to-cell variability

𝛽𝑃 = 0.0414

𝛽𝑃 = 0.0414, 𝛽𝐼 = 0.0002

𝑛 = 100

- We have recently finished the analysis and design of a PD 
multicellular control scheme and we are currently
investigating the full multicellular PID controller.

D. Fiore

[1] Martinelli et al. - “Multicellular PI control for gene regulation in microbial
consortia", IEEE Control Systems Letters (2022)
[2] Martinelli et al. – "Multicellular PD Control in Microbial Consortia", bioRxiv (2023)
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Ratiometric and Growth Control

• A crucial issue for multicellular control is to guarantee
stable coexistence of the cell populations and to mantain
their ratio to some desired value.

• Goal: Develop strategies (external or embedded) to 
control the ratio between two cell populations or their 
growth rates.

• We proposed and tested 3 different approaches:
1. Use reversible differentiation by endowing cells with 

toggle-switches that can determine their functions

2. Develop GRNs to allow self-regulation of cell growth in a 
population

3. Synthesize control strategies for the dilution rate to allow 
co-existence of two populations in a chemostat
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Ratiometric Control

• In this scenario we assumed that:

‒All cells belong to the same strain

‒The cells embed a reversible bi-stable memory mechanism

‒ Its active state encodes the current role played by the cell

‒This role can be switched in response to external 
events/inputs

• Objective:
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Possible example of applications

• Producers/Growers [3]: • Cooperative bioproduction (e.g. dimers):
[3] Weill, Andreani, Aditya, Martinon, Batt, Bonnans, Ruess, 
Proc. of European Control Conference, 2019

• We want to regulate the ratio to different set-points, depending on desired working loads.

M

𝑴𝟏

𝑴𝟐

𝑴𝟏𝟐
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Reversible differentiation

• To prove convergence of the closed-loop system,
we considered the simplified model

D. Fiore

[1] D. Salzano, D. Fiore, M. di Bernardo – “Ratiometric control for differentiation of cell populations endowed with synthetic toggle switches”, CDC 2019
[2] D. Salzano, D. Fiore, M. di Bernardo – “Ratiometric control of cell phenotypes in monostrain microbial consortia”, J. of the Royal Society Interface (2022)

A B
To model cell-to-cell variability
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Ratiometric control problem

• Objective: Find a feedback control law 𝑢(𝑡, 𝑥)
such that at steady-state two populations
emerge in the consortium

(whose cells’ dynamics can be 
described as

and their number converge to the desired ratio
𝑟𝑑 ∈ [0,1], that is 

• We considered two simple controllers:
(i) a bang-bang controller, and (ii) a PI controller

• then we
i. used event-driven modelling for the error system, and
ii. exploited a Lyapunov-like analysis to the resulting map.

𝑟𝐴 = 0.5 𝑟𝐵 = 0.5

Example:

D. Fiore

Populations’ ratio:
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Ideal case

• Specifically, we proved that bang-bang and 
PI controllers can exactly solve the previous 
problem if all cells are controllable.

• A cell                                         is controllable if 
by varying 𝑢 ∈ 𝑈 it can be moved from one group 
to the other and vice versa.

Bang-Bang controller

PI controller

D. Fiore

Control errors:
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Effects of uncontrollable cells 

• Some cells                                          will be uncontrollable due to

‒heterogeneity in their response (𝜂𝑖 ≠ 𝜂𝑗)

‒constraints on the maximum admissible input 

• There will be a residual error at 
steady-state, i.e.                          

Bang-Bang controller

PI controller

①

③

②

①

②③
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A realistic example in BSim simulations

• We used BSim [1-2] to simulate 

‒cell division, geometry, spatial 
diffusion, flush-out

‒and other physical constraints in 
microfluidic devices.

• Next step: in vivo experiments

D. Fiore

[1] Gorochowski et al., PloS One (2012)
[2] Matyjaszkiewicz et al., ACS Synthetic Biology (2017)
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2 - Self-regulation of growth rate

• Inspired by [1-2], we investigated the use of a Tunable Expression 
System to implement a population growth control system [3].

• The production rate of the toxin P is regulated by the quorum 
sensing molecule Q.

• The TES provides flexibility and fine tunability to the system.

• The proposed design showed good performance and robustness
via in-silico simulations in BSim.

• Currently, we are developing an extension for the case of two
co-existing populations (which shows very rich dynamics).

D. Fiore

[1] L. You, R.S. Cox, R. Weiss, F.H. Arnold, “Programmed population control by cell–cell communication and 
regulated killing”, Nature (2004)
[2] V. Bartoli, G.A. Meaker, M. di Bernardo, T. Gorochowski, "Tunable genetic devices through simultaneous 
control of transcription and translation”, Nature Communication (2020)
[3] V. Fusco, D. Salzano, D. Fiore, M. di Bernardo – "Embedded control of cell growth using tunable genetic 
systems", International Journal of Robust and Nonlinear Control (2022)
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3 - Control of dilution rate in chemostats

• We developed (i) a gain-scheduled state feedback controller, 
and (ii) a switching controller with sliding to regulate the ratio
of two independent populations with dynamics

,  with 𝜇𝑖 being of Monod’s type.

D. Fiore

[1] D. Fiore, F. Della Rossa, A. Guarino, M. di Bernardo – "Feedback ratiometric control of two microbial populations in a single chemostat", 
IEEE Control Systems Letters (2021)

(i) (ii)
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Cell cycle synchronization

• We developed feedback control strategies to 
achieve long-term synchronization of the cell 
cycle in budding yeast.

• We successfully validated the proposed approach 
by means of in-vivo experiments in microfluidics.

D. Fiore

[1] G. Perrino, S. Napolitano, F. Galdi, A. La Regina, D. Fiore, T. Giuliano, M. di Bernardo, D. di Bernardo – "Automatic 
synchronisation of the cell cycle in budding yeast through closed-loop feedback control", Nature Communications (2021)
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Ongoing research

•We are investigating the following topics:

‒Multicellular PID controller

‒Ratiometric control via reinforcement learning

‒Novel designs for whole-cell biosensors
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Future project (if funded)

• Title: “Control of  smart microbial communities 
for wastewater treatment”

• Call PRIN 2022 PNRR – Budget € 300.000

• Objectives:

1. Develop new methodologies to accelerate 
the engineering and the deployment of 
microbial communities for more efficient 
and reliable wastewater treatment

2. Develop new data-driven feedback control
strategies to enhance throughput in bioreactors

3. Design and build an innovative multi-chamber bioreactor
for fast prototyping of microbial communities
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